Send feedback for this document.

Both 2003 and 2004 versions of Digivote contain major errors that compromise the anonymity of the
voting procedure.

« Document History

« Conclusions

« Introduction

« Overview software

« Anonymity compromised

« Expert denial

« Appendix 1: Changes to the 2004 version

« Appendix 2: Overview of selected MAV routines

- Appendix 3: Layout of the data on the magnetic card
« Appendix 4: Partial reconstruction of the backend database scheme
« Appendix 5: Syntax of the BO19 file

« Appendix 6: Syntax of the BO20 file

« Appendix 7: Syntax of the BO21 file

« Appendix 8: Syntax of the BOO1 file

« Appendix 9: Syntax of the BO11 file

Document History

May 26, 2003 Paul - first version

Jun 02,2003 Paul - added randomize paragraph, routine table

Jun 06, 2003 Paul - added comment, added to randomize paragraph, added yet another bug
Jun 07,2003 Paul - added conclusion

Jun 12,2003 Paul - added TOC, Jites paragraph

Apr 10,2004 Paul - downgraded non-ANSI, added sessionkey/timestamp problems
May 18, 2004 Paul - fixed typo

Jun 27,2004 Paul - major rewrite for 2004 version

Jul 01, 2004 Paul - rebuttal

Jul 03,2004 Paul - added software overview paragraph

Jul 05,2004 Paul - added database schema and syntax for several BOXX files

Jul 06, 2004 Paul - updated for cleaning up voting-related globals

Jul 08, 2004 Paul - updated with BO19 and B020 syntax

http://users.skynet.be/fa331298/afront/contact.html

Conclusions:

Casual inspection of the Digivote sourcecode reveals obvious errors from which we deduce scant peer review
of the code, if any, has taken place. Keeping the voting anonymous isn't high on the priorities list: stack
variables are not zeroed after their useful lifetime has expired, the randomize function is misused thus that
the data on the magnetic cards contain a timestamp, and the order of votes can in almost all cases be deduced
from the contents of the BOO3 and B013 files.

0) Introduction.

If you vote electronically, you will get a magnetic card you can insert into a computer in a voting booth
(running the MAYV program). With an optical pen you select the party and or candidates you want to vote for
and this data will be written to the card. The card is then ejected and you take it with you out of the voting
booth and deposit it in another machine (running the URN program). Upon depositing, the vote is read and
written to disk in encrypted form. At the end of the election, the votes are decrypted again and counted.

We will take a look at the Digivote applications. The sourcecode for both the 2003 and 2004 versions can, at
the moment of writing, be downloaded from elections.fgov.be. If that fails, you can download our copy
(2003) (2004). The 2003 archive is called digivote.exe, but on *NIX, just do an "unzip digivote.exe".

Design documents for Digivote are not available. We could only find the publicly available instruction
manuals for election officials (available at elections.fgov.be), and two leaked evaluation documents:
http://www.poureva.be/article.php3?id_article=32 and http://www.poureva.be/IMG/pdf/19990701-2.pdf.

1) Overview of the software.

The Digivote sourecode is divided in two parts: the PRG directory contains the sourcecode for the MAV and
URN applications used in the voting stations, while the VOTE directory contains the sourecode for both the
preparation (logistics) and totalization (counting).

http://users.skynet.be/fa331298/afront/lib/digivote.zip
http://users.skynet.be/fa331298/afront/lib/digivote.exe
http://users.skynet.be/fa331298/afront/lib/digivote.exe

URM

figure 1:
Layout of a typical voting station: each voting booth contains a machine running the MAV program. A single
machine running the URN program is used to issue and collect magnetic cards.

All machines in the voting station are booted from the same floppy disk. Depending on the hardware
attached, either the URN or MAV program will be started. Both programs require a 16-character password to
run. In the case of the MAV machines, in the absence of a keyboard a magnetic card is used to transfer the
password.

The sourecode for the MAV and URN applications is nominally in C++, though the bulk of the code is plain
C. The code is of decent quality and fairly legible.

The software for the preparation and totalization is written in Progress. As far as we could determine, the
sourecode does not include the backend database or the database schemes, so the types of field names have to
be inferred from the context.

directory contents total lines
PRG C sourcecode

AES crypto routines 2064
ARC dos compression routines 1524
DIAGNOST | diagnostic tools 4336
DIVERS other tools 5361
GEN code common to MAV and URN programs 9077
MAV MAV specific code 12163
TOOLS H debug routines H 85

URN URN specific code 3676
VOTE Progress sourcecode
GEN subroutines 3950
HLC C support code 5148
INCL include files 700
PRP preparation and logistics programs 11923
TOOLS other tools 4167
TOT totalization programs 3395
table 1:

Digivote sourcetree overview.

2) Anonymity compromised.

In both 2003 and 2004 versions, there are two major errors that compromise the anonymity of the voting
procedure. Both are caused by the same mistake: an assumption that the "random" function returns a truly
random number. In reality, the "random" function will return a value that is a deterministic function of the
"seed" value used to seed the Pseudo Random Number Generator (PRNG). For the Borland library used in
the Digivote applications, this function can be written as:

#define MULTIPLIER 0x015a4e35L /* 22,695,477 */
#define INCREMENT 1
static long Seed = 1;

void srand(unsigned seed) {
Seed = seed;
}

int rand(void) {
Seed = MULTIPLIER * Seed + INCREMENT;
return((int) (Seed >> 16) & Ox7fff);

#define RAND MAX Ox7FFFU
#define randomize() srand((unsigned)time(NULL))
#define random(num) (int) (((long)rand()*(num))/(RAND MAX+1))

If the PRNG is seeded with the time, a call to "random" will get you a number that is for all practical

purposes a timestamp.

The MAYV program uses the "random" function to create a sessionkey, used to add variance to the voting data
written to the magnetic card, before a digital signature is added. The digital signature allows the URN
machine to have a high degree of certainty that the vote on the magnetic card was written by one of its own
MAV machines. It also prevents against subverted magnetic card readers modifying data, either on the MAV
or URN machines.

The need for an extra sessionkey is not immediately clear. The only thing we could come up with was to
detect "cloned" votes, i.e. cards that are bit for bit copies of a card with a valid signature, and hence have the
same sessionkey. However, the URN machine does not actively scan for collision of sessionkeys.

Since the URN machine needs the sessionkey to verify the digital signature, the sessionkey is written on the
magnetic card. And since the PRNG is seeded with the time for each vote, this sessionkey is for all practical
purposes a timestamp.

This code will create a lookup table of sessionkeys (using random and srand as defined above):

int sessionkey(unsigned s)

{
int 1;
int key = 0;
srand(s);
for(i=0; i < 8; i++)
key = 10*key+random(10);
return key;
}

int main(int argc, const char *argv[]) {
unsigned 1i;

long elections = 0x40CBDF50; /* june 13 2004 0600 UTC */
int duration = 12*3600;

for(i=0;i<duration;i++) {
int key = sessionkey(elections+i);

int hrs = 1 /3600;
int min (i -(hrs*3600))/60;
int sec = (1 -(hrs*3600)-(min*60));

printf("%081i %021:%021i:%02i\n",key,hrs+6,min,sec);

}

On the URN side, the votes are read, encrypted and written to disk. Again, the "random" function is used to
write each vote to a supposedly arbitrary position in the BOO3 and B013 files. However, as here the PRNG is

seeded only once, the order of the votes can easily be reconstructed in almost all cases.

Modifications made to the 2004 version include the zeroing of sensitive globals before ejecting the magnetic
card from the MAV machine, but those modifications do not include routines copying this information to
local variables cleaning up after themselves. As it would take some effort to find out if the stackspace used
by, e.g. the routine Build_Card_Buffer for a buffer will be overwritten by stackspace used by other routines
by the time the voter leaves the vooting booth, we are for the moment not certain whether all sensitive data is
zeroed by the time the magnetic card is ejected and the voter leaves the voting booth.

3) Expert denial.

In a draft report, the committee of experts denies the possibility that the order of votes can be deduced from
the contents of the BOO3 or BO13 file:

- Les remarques concernant l'ordre aléatoire d'encodage des votes dans l'urne sont non pertinentes dans la
mesure ou la séquence aléatoire n'est reproductible que si on connait avec certitude la seconde a laquelle
l'urne-PC a démarré le programme principal, ce qui est impossible.

- De opmerkingen betreffende de willekeurige volgorde van de opslag van de stemmen in de urne zijn niet
terecht in de zin dat de willekeurige volgorde slechts herhaald kan worden indien men met zekerheid de
seconde kent waarop de urne-PC het hoofdprogramma heeft opgestart, hetgeen onmogelijk is.

This is incorrect, because in most cases (i.e when less than 1995 of the maximum 2000 possible votes are
cast), the actual seed of the PRNG and the second of initialisation can be deduced from the pattern of "holes"
left in the list of votes.

Because it is impossible to know how many voters will turn up, all votes are pseudorandomly distributed
over 2000 positions (an upper bound for the number of voters in a single voting station). When all votes are
cast, the positions that do not contain a vote allow us to determine the seed for the PRNG.

What we do is we assume a range of possible values for the moment the machine was booted, and hence the
number the PRNG was seeded with. Assuming the URN machine must have been booted up to a few hours
prior to the opening of the voting station, we only have to try on the order of 1074 (2*13) possibilities. For a
reasonable number of votes (i.e. not to close to 0 or 2000) each of these possibilities will have a unique set of
"holes", and only one of these will correspond to actual distribution of votes in the BOO3 and BO13 files.

Once the correct seed is known, the order of the votes can be computed.

figure 2:

top half: different pseudo-random distributions of n elements over n positions offer no information to the
distribution used.

bottom half: different pseudo-random distributions of less than n elements over n positions create different
patterns, that can be used to determine which distribution was used.

references:

McGraw, Viega: Make your software behave: Playing the numbers
www-106.ibm.com/developerworks/library/s-playing

Appendix 1: Changes to the 2004 version.

Comparison of the 2003 with the 2004 versions has been complicated by the removal of comments from
most of the sourcefiles. Non-trivial changes include:

- Major changes to the lightpen driver.

- Support for higher resolution graphics driver.

- Support for compression and authentication of data files.

- A more complex counting procedure that would allow the detection of some RAM soft-errors.
- Interface changes including screen layout and voting procedure.

- Better error messages in some programs.

- MAYV Globals containing sensitive data are now zeroed before ejecting the magnetic card.

- A bug in the 2003 version first identfied by us was fixed in the 2004 without attribution:

http://www-106.ibm.com/developerworks/library/s-playing/

In the Verify_Password routine in gencryp.cpp :
memcpy(sKey.data, &record[MAX IV SIZE], MAX IV SIZE);
was changed to

memcpy(sKey.data, &record[MAX IV SIZE], AESKEYLEN);

Appendix 2: Overview of selected MAYV routines.

routine name functionality

remarks

for(;;) main loop

Format Blanco Card

Election Loop

Init Card Buffer

Process Election*

Process College*

Process Party*

Init Candidates

Display Candidates

Input Candidates

Is Head Vote Selected*

Are Candidates Selected*

Buffer Vote convert to proto card format

Init Vote

Format Vote

Append To Card

initCard
Generate Mav_Session create session key "mavSessionKey" keyspace=10"8
randomize
Build Card Buffer serialize for magnetic card format

Convert Vote Buffer To Card Buffer

MAC calculate hash

Calculate Internal MAVVOT

computeMac

Write Votes

Reader Write Card

printTicket

Reader Eject Card

Reader Wait Card Removed

table 2:
Call tree of selected MAYV routines.

Appendix 3: Layout of the data on the magnetic card.

Layout of the magnetic card data used for the Digivote automatic voting
system used for the 2003 elections.

The magnetic card used for the Digivote automatic voting system is
listed as ISO 7810/7811-2 compliant. [1]

From the definition of the constant MAX CARD BUF as 104 [2], we can
reasonable infer track 3 (ISO 4909) is used, allowing up to 104 5-bit
characters.

The actual layout is as follows [3],[4]:

- 8 chars session key.

This sessionkey seriously compromises the anonymity of the voting
process, as the PRNG is seeded with the time for each sessionkey
generated.

- 1 char vote flag.
0

initial, 1 = voted, 2-9 = canceled.

- A series of voting data for each election. These are either 8 or 34
characters each, depending on the type of elections.
The total size can be up to 80 characters.

The first four characters are the same for each type of elections:

- 1 char election id

- 2 chars party id (0 for blank)

- 1 char vote type (0 party vote, 1 effective only, 2 replacement
only, 3 effective+replacement)

the remainder, for type 0 elections:

- 2 char effective
- 2 char replacement

for type 1 elections:

- 30 chars for up to 90 bits, one for each candidate.

- 1 char voter type
0 = Belgian, 1 = EU.
- 0 to 7 bytes padding with zeroes to the next multiple of 8

- 8 chars signature / MAC
the remainder of the data is padded with zeroes.

[1] College van deskundigen belast met de controle van de
geautomatiseerde stemmingen en stemopneming - verslag betreffende de
verkiezingen van 13 juni 1999.

[2] Digivote sourcecode gen/gencard.h, line 25.

[3] Digivote sourcecode rev 9.12 gen/gentype.h, lines 207-267.

[4] Digivote sourcecode rev 9.13 gen/gendata.cpp, lines 907-948.

Appendix 4: Partial reconstruction of the backend database scheme.

election

s-id Date

coll-id

coll-name

colls

e-type Int 0: 1 vote 1: Multiple votes
el-mode Int Eligible voters as a flags 1l:Bel. resident 2:Bel.
non-resident 4:Non-Bel. EU nat.
et-id

e-id

e-pr Bool

headO[]

headl|[]

head2[]

head3[]

short-name[] Char[]
long-namel[] Char[]

mandatory Bool

org-type

separate TOT

supps Bool True if the election has both effective
and replacement candidates

maxcan|] Int[3] constraints on number of candidates by
language group

maxsup|] Int[3]

minsupl] Int[3]

party

p-id

e-id

s-id Date

coll-id

party-name

taalgroepl]

num-can Int # of candidate detail records with c-
type==

num-sup Int # of candidate detail records with c-
type==1

logo[]

logo-height Int

logo-width Int

logo-bytes Int

vote top Char[32] Encrypted

vote can Char[32] Encrypted

vote sup Char[32] Encrypted

vote cs Char[32] Encrypted

urnedest

urne-id

urne-area

org-type

sys-type

total-cards Int

annul-card
unused-card

count-card[]

elects|[]
out-status
master-key
session-key
adres

name
postcode
tel-nr
lokal
data-read
from Backup
time-rcv
disk-type

lstdest
lst-id
lst-area
org-type
sys-type
master-key
session-key
out-status
adres
name
postcode
tel-nr
lokal

setup

the software
setup-id
org-type
sys-type
area
areaname
orginator
startupl[]
lang-pc
lang-bur[]
paswdprp
paswdtot
master-key
session-key

session
s-id
upmas
upses
print-done
prpmade

Int
Int
Int[16]

Int
Char[16]

Char[30]
Char[30]
Charl[4]
Char[20]
Char[25]
Int

Time

Int
Char[]
Char[]

Char[]
Int

Char[3]1[]

Int
Bool[3]
Char[32]
Char[32]
Charl[]
Char[]

Date

Bool
Int

O:Not read 1: Read from Master 2: Read

defines capabilities of station running

IIMII’ IIIII’ IIGII Or IITII

Session, Election and Organisation info
range 0..4 : D, F, G, D/F, F/G
languages used D/F/G

password for logistics activities
password for totalization activities

prpread Int

urnmade Int

urnread Int

lang Int range 0..4 : D, F, G, D/F, F/G
lang2 Int as lang
prt-mav Int

tel-nr Char[]

hands-off Boo'l

nbr flop Int

paswdest

pasw-1id

pasw-area

org-type

master-key
session-key
sys-type
adres

name
postcode
tel-nr
lokal
data-read
out-status

candidate

p-id

e-id

c-1id

s-1id Date

coll-id

c-type Int 0: effective, 1: replacement
Cc-namel Charl[]

C-name?2 Char[]

vote

language localization strings

var lang

var_name Char[] variable name
var _string|[] Char[3][] localized string
fra _name Char[] frame name

len string

organisation

setup-id
Ingavel]
headingl[]
heading2[]
heading3[]
org-type
areal]

layout

doc-1id Int

page-nbr Int

sect-nbr Int

line-nbr Int

contents Char[] Substrings of the form @Fnn indicate fields to be
inserted

selection

c-id Int

c-type Int

e-id Int

lang-pc Int

p-id

party-name

s-id Date

verk name Char[]

types template records used to create election records
coll-id

coll-name Char[3][] College name by language

colls

e-type Int 0: 1 vote 1: multiple votes
el-mode Int Eligible voters as flags 1:Bel. resident
2:Bel. non-resident 4:Non-Bel. EU nat.

et-id

headO[]

headl|[]

head2[]

head3[]

short-namel] Char[3][] Short name by language
long-namel[] Char[3][] Full name by language

mandatory

org-type

separate TOT

supps

maxcan|] Int Constraint on number of candidates by
language group

maxsup[] Int

minsupl] Int

used

names

areal]

session-exceptions

setup-id date
lang Int
heading3[]

prt-mav Int
usage

doc-1id

doc-lang

doc-type Int

9: 81: 82 83:

et-combi

et-1ids

setup-id Int
urnechku

file

boot-file Bool
copy-file Bool

in \VOTE\FILES\INCL\
Src-name Char[]
dest-name Char[]
\VOTE\FILES\CHECK\
sysinfo

userName

licenseNo

serialNo

offSet

panache workfile
id Int

type Int
maxpar Int
verkiezing workfile
e-1id

e-pr Bool
wf workfile
w-prg

w-db

w-ldb
wfrow workfile
nr

txt[]

all election buffer f
setup2 buffer f
f2 generic
_file database
_field
_index

_index-field

1: PV 2: 3: receipt PRP 4: receipt TOT 5: 6: 7:

List of files on the U-disk requiring a checksum

If true: File in root directory
If true: file in \VOTE\FILES\BAT\ if false: file

filename
name of checksum file to be placed in

or election
or setup

buffer

metadata tables

Appendix 5: Syntax of the B019 file.
The BO19 file is encrypted, the unencrypted form of the BO19 file is called INFLIS.

indicate our meta-comments, original comments start with //
\ are used to split long lines

all P,L and C records are space delimited.

related files:
PRP/CREATLIS.P
PRP/CRINFLIS.P
PRP/IMPBO19K.P
PRP/IMPORTPR.P

Paswoord check
<lstdest.sys-type><lstdest.org-type><lstdest.lst-area><lstdest.lst-id>
<types.et-id>

<election.e-id>

P <party.s-id> <party.e-id> <party.coll-id> <party.p-id>

<party.party name> \

<party.taalgroep[l..3]>

L <party.s-id> <party.e-id> <party.coll-id> <party.p-id> 0\
<party.logo width> <party.logo height> <party.logo bytes>

#for each byte in the logo:

L <party.s-id> <party.e-id> <party.coll-id> <party.p-id>
<1l..party.logo bytes> \

<logobyte>

C <candidate.s-id> <candidate.e-id> <candidate.coll-id> <candidate.p-id>
\

<candidate.c-type> <candidate.c-id> <candidate.c namel>
<candidate.c_name2>

Appendix 6: Syntax of the B020 file.
The B020 file is encrypted, the unencrypted form of the B020 file is called INFPAS.

indicate our meta-comments, original comments start with //
\ are used to split long lines

all D records are space delimited.

related files:
PRP/CREATPAS.P
PRP/CRINFPAS.P
PRP/IMPB020D.P
PRP/IMPORTPR.P

Paswoord check
<paswdest.sys-type><paswdest.org-type><paswdest.pasw-

area><paswdest.pasw-id>

D <urnedest.sys-type> <urnedest.org-type> <urnedest.urne-area>
<urnedest.urne-id> \

<urnedest.name> <urnedest.adres> <urnedest.postcode> <urnedest.lokal> \
<urnedest.tel-nr> <urnedest.master-key> <urnedest.session-key>

Appendix 7: Syntax of the B021 file.

The B021 file contains the election-related data for the MAV application.
The B021 file is decompressed and read from the same floppy used to boot the MAV machine.

The A record has one line for each field, identified by a tag.
B,C,D and E records have one line for each record.

indicate our meta-comments, original comments start with //
\ are used to split long lines

All records are tab-separated.

related files:
PRP/CPURN.P
PRP/CREATURN.P
PRP/CRINFURN.P
TOOLS/BHURNCHK.P

// A Verkiezings gegevens : Gebruikt voor configuratie.

A 1 “<urnename>" #BureauName

A 2 "<orgname>"

A 7 <session.tel-nr>

A 8 <wz-nbr_flop>

A 9 <session.s-id> #Electiondate

A 10 <wz-prt-mav> #ticketing

//

//ELECTION DATA

//

B <election.et-id> <election.e-type> \
<election.long-name> <election.short-name> \

<election.long-name> <election.short-name> (if bilingual D/F

or F/G)

//

//COLLEGE DATA

//

C <election.et-id> <election.coll-id>

<election.coll name>

//

//PARTY DATA

//

D <election.et-id> <election.coll-id> \
<party.p-id> <party.party name> \
<party.logo width> <party.logo height> \

<languagegroup>

//
//CANDIDATE DATA

//

E <election.et-id> <election.coll-id> \
<party.p-id> <candidate.c-type> <candidate.c-id> \
<candidate.c_namel> <candidate.c_name2>

Appendix 8: Syntax of the B001 file.

The BOO1 contain the election results for each URN machine, or are the result of merging several individual
B0O01 files. Only the BOO1 files produced by the URN application contain B records.

Each line of the BOO1 file is individually encrypted, the unencrypted form of the BOO1 file is called
ELECT.LST.

The A record has one line for each field, identified by a tag.
B.,D and E records have one line for each record.

indicate our meta-comments, original comments start with //
\ are used to split long lines

related files:

URN/URNRECO.CPP
GEN/GENDATA.CPP
TOT/CREATTOT.P
TOT/TOTURNE.P
TOT/CRTOTINF.P
A 0 <cards> <count[1l]> ... <count[l6]>
A 1 <urnename>
optional: B records as in B021
D <election.et-id> <election.coll-id> <party.p-
id> \
<party.vote top> <party.vote can> \
<party.vote sup> <party.vote cs>
E <election.et-id> <election.coll-id> <party.p-
id> \
<candidate.c-type> <candidate.c-id> <vote pers>

Appendix 9: Syntax of the B011 file.

The BO11 file contains the election results for a single kanton.

It is computed from either individual BOO1 files produced by the URN application, or intermediate aggregate
BOO1 files.

The A record has one line for each field, identified by a tag.
B,C,D.E.F and G records have one line for each record.

indicate our meta-comments, original comments start with //

\ are used to split long lines

related files:
TOT/EXPZET.P
TOT/RD_RESUL.P

[/=--mmmmmmm oo

// A : CONFIGURATION DATA

[/----mmmmmm -

A 1 <setup.orginator>

A 2

A 3

A 4

A 5

A 6

A 7

A 8

A 10

A 11 <setup.areaname>

A 12 <session.lang2>

A 13 <session.s-1id>

[/=--mmmmmmm oo

// B : ELECTION DATA

[/ -

B <election.et-id> <e-type> \
<election.long-name> <election.short-name> \

<election. long-name> <election.short-name> (if bilingual D/F

or F/G)

VR R

// C : COLLEGE DATA

[/=--mmmmmmm oo

C <election.et-id> <election.coll-id>

<election.coll name>

[/=--mmmmmmm oo

// D : PARTY DATA

[/----mmmmmm -

D <election.et-id> <election.coll-id> \
<party.p-id> <party.party name>

[/----mmmmmm -

// E : CANDIDATE DATA

VR R

E <election.et-id> <election.coll-id> \
<party.p-id> <candidate.c-type> <candidate.c-id>

\
<candidate.c_namel> <candidate.c_name2>

[/=--mmmmmmm oo

// F : PARTY RESULTS

[/----mmmmmm -

F <election.et-id> <election.coll-id> <party.p-

id> \
<vote top> <vote can> \

<vote sup> <vote cs>

<election.et-id>
<party.p-id>
<candidate.c-1id>

<election.coll-id>
<candidate.c-type>
<vote pers>

\

	Both 2003 and 2004 versions of Digivote contain major errors that compromise the anonymity of the voting procedure.
	Document History
	Conclusions:
	0) Introduction.
	1) Overview of the software.
	2) Anonymity compromised.
	3) Expert denial.
	Appendix 1: Changes to the 2004 version.
	Appendix 2: Overview of selected MAV routines.
	Appendix 3: Layout of the data on the magnetic card.
	Appendix 4: Partial reconstruction of the backend database scheme.
	Appendix 5: Syntax of the B019 file.
	Appendix 6: Syntax of the B020 file.
	Appendix 7: Syntax of the B021 file.
	Appendix 8: Syntax of the B001 file.
	Appendix 9: Syntax of the B011 file.

